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the quark-antiquark free energy in them and confirm that the transition corresponds to
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1. Introduction

In the gauge-gravity duality picture the gravity dual of finite temperature N = 4 su-

persymmetric Yang-Mills theory is a 5-dimensional AdS space (times S5) with a black

hole [1, 2]. While this is a very special conformally invariant theory and requires also

g2Nc À 1, Nc À 1 for its validity, it has recently become apparent that one could meaning-

fully apply the gauge-gravity duality picture to QCD matter produced in relativistic heavy

ion collisions, to viscosity [3 – 5], to jet energy loss [6 – 11] and to photon production [12].

Note that these are all quasistatic phenomena; the gravity dual of a full dynamic heavy

ion collision is unknown, for attempts, see [13 – 15].

Ideally, one would like to derive the gravity dual of QCD in a string theory framework,

but this top-down way has so far not lead to a unique result. Instead, one has, in a

phenomenological approach, studied various deformed metrics as candidate gravity duals

of QCD-like theories [16 – 23]. The purpose of this article is to continue this line and to

present a gravity dual model for QCD thermodynamics. The model will cover both the

deconfined phase (stable at T > Tc, metastable at T < Tc), the confined phase (stable at

T < Tc, metastable at T > Tc) and the phase transition in between. The model for the

high T phase will be a deformed AdS black hole metric with a dilaton, the model for the

low T phase will be a deformed horizonless AdS metric with a dilaton. A deformation

is defined as a multiplication of the 5d metric by an arbitrary function depending on the

fifth coordinate z. The dilaton plays an essential role here. The phase transition will be

analyzed in two independent ways: by computing the energy momentum tensor in the 4d

boundary theory and by computing the difference of the 5d bulk actions [24, 2, 25, 26].

The shapes and parameters of the deformations of the two phases are fixed by using the
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QCD number for the Tc of the 4d boundary theory and by using constraints from the

T = 0 hadron spectrum [23]. With these parameters the 5d bulk Hawking-Page transition

coincides with the 4d boundary one. With the same parameters one can then also compute

the QQ̄ free energy (see also [27, 28] in the two phases. The significant role of the dilaton

is apparent here, the deformation in the string frame is qualitatively different from that

in the Einstein frame. At T = 0 we see that the QQ̄ potential contains a confining linear

part but also string breaking, indicating that the deformation contains effects of dynamical

quarks. At T > Tc the QQ̄ pair becomes deconfined with entropy ≈ 2.1/pair.

The model we end up with is admittedly not unique and contains several parameters,

but this is due to the fact that we wish to treat a large number of different QCD phenomena

at the same time. Limiting oneself to one phenomenon at a time, simpler gravity duals can

be presented. Our result shows that a comprehensive solution is possible.

The paper is organized as follows. In section 2, we specify the model. We assume

a five dimensional gravity action with a dilaton and a matter Lagrangian and postulate

two solutions corresponding to QCD-like theories on the boundary. In section 3, using

gravity/gauge theory duality we compute the energy momentum tensor on the 4d boundary

and find the phase structure of the boundary gauge theory. In section 4, we use the meson

mass spectrum to constrain the parameters of our approach. In section 5, we consider

a Hawking-Page type transition of the 5d bulk geometry and find the correspondence

between the phase transition on the boundary and the phase transition in the bulk. In

section 6, we compute the Wilson-Polyakov loops and correspondingly the free energy

(potential at T = 0) between a probe quark and antiquark. This confirms that, indeed, at

high temperatures we are in the deconfined phase and at low temperature in the confined

phase. Section 7 contains a discussion.

The numbers related to experimental ones quoted below should be understood to have

a sizable O(10%) error.

2. The model

We consider the following five dimensional action in Einstein frame, in standard notation:

S =
1

16πG5

∫

d5x
√−g

(

R − 2Λ − 4

3
(∂µΦ)2

)

− 1

8πG5

∮

d4x
√−γΘ +

∫

d5x
√−geaΦLm.

(2.1)

The second term is the boundary term (for a boundary surface z = ε) and the third term is

the matter part, which we do not have to specify completely. The constant a is dependent

on the coupling of matter to gravity. This action can be the bosonic part of a supergravity

action descendent from string theory. Note that even though we do not specify the origin of

the model in detail, we have in mind the near horizon geometry of a stacked brane solution

that gives asymptotically AdS5 space. A nontrivial matter part can be introduced if we

add, for example, a spacetime filling brane adding fundamental matter to the problem [29 –

32]. The effect of the presence of fundamental matter would be already reflected in the full

supergravity solution.
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We assume that Lm can be so chosen that the following metric is a solution as a dual

to finite temperature QCD.

ds2 = L2 eh(z)

z2

[

−g(z)dt2 + dx2
1 + dx2

2 + dx2
3 +

dz2

g(z)

]

, (2.2)

with a dilaton Φ(z). The function h(z2), h(0) = 0 defines the deformation. The boundary

theory lives at z = 0 and the geometry would be asymptotically (when z → 0) AdS. We

shall define the string frame so that it contains the combination
√−ge−2ΦR in the action.

The transformation between Einstein frame and string frame is then given by

g
(E)
MN = e−

4

3
Φg

(s)
MN (2.3)

and the bulk metric in the string frame will be the same as (2.2) but with

eh(z) ⇒ ef(z), f(z) ≡ h(z) +
4

3
Φ(z). (2.4)

Our gravity dual is defined by specifying the deformation h(z) and the dilaton Φ(z).

We will have two alternatives, one will be the stable phase for T > Tc, the other for T < Tc.

The former is

h(z) = −cz2

Φ(z) =
3

4
φz2

g(z) = 1 − z4

z4
0

, (2.5)

and the latter

h(z) = −cz2(1 − 29

20
w(

√
cz))

Φ(z) =
3

4
φz2

g(z) = 1. (2.6)

Here

z0 =
1

πT
(2.7)

is the horizon radius of the metric (2.2), c ≈ 0.127 GeV2 is a constant determined from the

Tc of the QCD phase transition in the 4d boundary theory and φ ≈ 0.311 GeV2 is a constant

which, together with w(∞) ≡ w(x → ∞) = −1.0 is determined from the mass spectrum

of QCD. A further property of the function w(x) is that it for small x should behave as

w(x) = x2 + O(x4), constrained by the QCD phase transition in the 4d boundary theory

(to make the bag constant vanish in the low temperature phase). We can thus constrain

the UV and IR limits of w(x); the intermediate behavior affects details of the QQ̄ potential.

We will use the ansätz

w(x) = 2x2e−x2 − tanh x2, (2.8)
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Figure 1: A plot of w(z) defined by eq. (2.8) (left) and a plot of the low T metric string frame

deformation f(z) = 29[w(
√

cz) − w(∞)]cz2/20, c = 0.127GeV2, w(∞) = −1.

plotted in figure 1. In the same figure we also show the combination f(z) = 29[w(
√

cz) −
w(∞)]cz2/20, later identified as the deformation of the low T metric in the string frame

eq.(6.4). Further important constraints come from the fact that we want the phase transi-

tion in the 4d boundary theory and the Hawking-Page transition in the 5d bulk theory to

agree. In particular, this is possible only if the metric deformations coincide for z → 0, i.e.,

the constants c and φ coincide in (2.5) and (2.6). The 5d bulk transition further constrains

c > 0, w(∞) < 20/29. Also note in the ansatz (2.5) and (2.6), we have assumed the dilaton

and matter from Lm have the same leading order behavior.

3. Thermodynamics of the gauge theory on the boundary

We know that the metric (2.2) for h = 0 is a solution of the 5d AdS equations

RMN − 1

2
RgMN − 6

L2
gMN = 0 (3.1)

and the boundary theory is hot N = 4 supersymmetric Yang-Mills theory in 4d at the

temperature T = 1/πz0 with a pressure = 3/4 times the ideal gas value [33]. How is this

affected by the introduction of the deformation h(z)? To be able to treat the two cases (2.5)

and (2.6) simultaneously, write h(z) = d1z
2 + d2z

4 + O(z6), only the parameters d1, d2 of

dimension T 2, T 4 matter for this problem.

To answer this question we should compute the energy-momentum tensor of the bound-

ary theory. Since the theory is strongly coupled, the computation directly from the bound-

ary field theory is not feasible, but we can use the gravity/gauge theory duality for this

purpose. How this is to be done has been studied, say, in [34 – 38]. However, the general

methods involve writing down an explicit 5d gravity-matter action and obtaining the met-

ric and other matter fields as solutions of equations of motion. Here our starting point is a

phenomenological deformed metric and the gravity action contains an unspecified matter

Lagrangian. This unknown part will lead to an unknown part in the energy momentum

tensor we obtain. Even though the most general case would be interesting, in this paper we

consider the case that the unspecified part from matter fields will cancel when studying the

phase transition, computing the difference of pressures between two phases. Analogously,

in the later (section 5) analysis of the phase transition as a bulk Hawking-Page transition
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in 5d, the unknown matter Lagrangian will be eliminated using equations of motion and

cancelation of boundary terms.

We transform the metric (2.2) to the form

ds2 =
L2

z̃2
(gµν(x, z̃)dxµdxν + dz̃2), (3.2)

where gµν → ηµν at z̃ = 0. If we expand the metric gµν for small z̃:

gµν(z̃, x) = ηµν(x) + g(2)
µν (x)z̃2 + g(4)

µν (x)z̃4 + g(6)
µν (x)z̃6 + · · · , (3.3)

the energy-momentum tensor Tµν of the boundary theory is given by [37]

Tµν(x) =
L3

4πG5
[g(4)

µν (x) + Xµν + Yµν ] =
N2

c

2π2
[g(4)

µν (x) + Xµν + Yµν ], (3.4)

where

Xµν = −1

8
ηµν [(tr g(2))

2 − tr g2
(2)] −

1

2
g2
(2)µν +

1

4
tr g(2) · g(2)µν

= −C2ηµν if g(2)µν = Cηµν (3.5)

depends only on the square of contractions of g(2) and where

Yµν = Cmηµν (3.6)

is a part depending on matter fields. We also used that for AdS5 × S5 spacetime

G10 = G5π
3L5 =

π4L8

2N2
c

. (3.7)

For a thermal stationary and homogeneous system one, of course, has gµν(z̃, x) = gµν(z̃).

Although we cannot determine the constant Cm in (3.6), we expect it to be the same

for both phases. This is analoguous to the fact that in our metric ansatz (2.5) and (2.6)

the leading boundary behaviour of both the deformation h(z) = −cz2 + · · · and the dilaton

Φ(z) = 3
4φz2 is the same in both metrics; which also imply that this holds for g(2)µν

computed below.

For the deformed metric (2.2) the transformation relating z and z̃ is defined by

∫ z̃

ε

dz̃

z̃
=

∫ z

ε

eh(z2)/2

√

g(z)

dz

z
, (3.8)

where we have enforced the condition z̃ ≈ z for z → 0 by putting the same ε as the lower

limit in both integrations. This can be integrated to

z̃2 =
2z2

1 +
√

g(z)
exp

[∫ z

0
dz

eh(z)/2 − 1

z
√

g(z)

]

, (3.9)

For h = 0, unmodified black hole, one can invert

z2 =
z̃2

1 + z̃4/(4z4
0)

(3.10)

– 5 –



J
H
E
P
0
1
(
2
0
0
7
)
0
1
9

and get for the metric the exact result of [15]

ds2 =
L2

z̃2

[

−(1 − z̃4/4z4
0)2

1 + z̃4/4z4
0

dt2 +

(

1 +
z̃4

4z4
0

)

(dx2
1 + dx2

2 + dx2
3) + dz̃2

]

. (3.11)

For any h, to invert (3.9) to express z2 in terms of z̃2, we expand in z2 using the expanded

form h(z2) = d1z
2 +d2z

4 + · · ·, higher terms do not matter. One then obtains, for the high

temperature metric (2.5) with the horizon z0

gµν = ηµν − 3

2
d1ηµν z̃

2 +

[(

uµuν +
1

4
ηµν

)

1

z4
0

− 20d2 − 7d2
1

16
ηµν

]

z̃4 + · · · , (3.12)

where uµ = (1, 0, 0, 0) so that uµuν + 1
4ηµν = diag(3/4, 1/4, 1/4, 1/4). Using (3.4),(3.5),(3.6)

and (3.7) the energy-momentum tensor then is, for the high temperature metric,

Tµν =











3aT 4 + Bh 0 0 0

0 aT 4 − Bh 0 0

0 0 aT 4 − Bh 0

0 0 0 aT 4 − Bh











, (3.13)

where

a =
π2N2

c

8
Bh =

N2
c

32π2
(−20dh

2 + 29dh2
1 − 16Cm) =

N2
c

32π2
(29c2 − 16Cm), (3.14)

where we have inserted for the deformation of the high temperature metric (2.5) dh
1 =

c, dh
2 = 0. For the low temperature metric (2.6) there is no T 4 term,

Tµν = −Blηµν (3.15)

with

Bl =
N2

c

32π2
(−20dl

2 + 29dl2
1 − 16Cm) =

N2
c

32π2
(−16Cm), (3.16)

where dl
1 and dl

2 are the expansion coefficients of the deformation of the low temperature

metric. At this point we are free to constrain them. A natural starting point for this

constraint is that Nc is large and that there in the QCD phase transition is a large change in

the number of degrees of freedom when one crosses Tc. In fact, at large Nc, p′h(Tc) ∼ O(N2
c )

while p′l(Tc) ∼ O(1) [39]. This implies that the coefficient of the T 4 term should be

small in absolute value and we implement this by choosing the constraint 20dl
2 = 29dl2

1 .

Phenomenologically, one may note that in the high T phase there are gluons and quarks

while the low T phase only contains massless pions. For example, in the bag model for hot

QCD matter one writes ph(T ) = ahT 4 − B, pl(T ) = alT
4 with ah À al.

1

Thus our result for the pressures of the two phases is

ph(T ) =
π2N2

c

8
T 4 − N2

c

32π2
(29c2 − 16Cm)

pl(T ) =
N2

c

32π2
(16Cm), (3.17)

1Though the lattice data rather follows the pattern p = ahT 4
− B̃T 2 [40]
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Figure 2: The pressure p(T ) and entropy density s(T ) = p′(T ) in terms of temperature T with

B = 29c2N2

c /(32π2) and L = Tc∆s = 29N2

c c2/(8π2). The contribution of the matter fields is

neglected here, Cm ¿ c2.

and for the entropy density

sh(T ) =
π2N2

c

2
T 3

sl(T ) = 0, (3.18)

The phase transition occurs at pl(Tc) = ph(Tc). The unknown matter field contribution

Cm cancels from here, leading to

πTc =

(

29

4

)1/4 √
c. (3.19)

This is what one dimensionally expects, introducing a deformation exp(cz2 + · · ·) one has,

in addition to T = 1/πz0, introduced a new energy scale c1/2 to the problem. Using (3.19)

to determine the constant c we have, using the current lattice data as an input for Tc [43],

Tc = 186MeV ⇒ c ≈ 0.127GeV2. (3.20)

The general behavior of the pressure p(T ) and entropy density s(T ) = p′(T ) is shown

in figure 2. The transition corresponds to first order phase transition with two metastable

branches persisting at all T . In section 6 we will show that the stable branch T > Tc

corresponds to a deconfined phase and that at T < Tc to a confined phase.

For high temperature geometry (2.5), one can get the entropy directly from the geo-

metrical data of the bulk, computing the area of black hole or evaluating the Euclidean

action. If we calculate the entropy density from the area law, we get

sh(T ) =
π2N2

c

2
T 3e−

3

2π2

c

T2 . (3.21)

This looks very interesting phenomenologically since it fits well with the lattice data [40]

with proper adjustment of number of degrees of freedom. However, it differs from the

result (3.18) for the entropy density. This is again due to the fact that we start from a

deformed metric and do not derive it as a solution of 5d gravity-matter equations. For this

complete treatment the results should concide [41] changing also the black hole entropy

formula (3.21).
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4. Meson mass spectrum

In this section, we show how it is possible within our framework to get a mass spectrum

for mesons which grows linearly with the excitation level n and spin S, i.e., m2 ∼ (n + S).

We use the constraints, considered first in [23]: in the limit z → ∞, the function f(z) and

the dilaton Φ(z) should behave as f(z) → zk, where k < 2, and Φ(z) → z2, to obtain a

linear mass spectrum as a function of n and S.

At zero temperature, we have the metric (2.6). We specify the matter part in (2.1) to

contain a spin S field:

S =

∫

d5x
√−ge−Φ

(

1

2
(DAS)2 +

1

2
M2A2

S

)

, (4.1)

where A is totally symmetric rank S tensor field. We are assuming that the matter in this

case is open string matter on the spacetime filling branes, for example, and the coupling

to the dilaton is fixed in this spirit. In the axial gauge, the equation of motion for the

transverse traceless part, after rescaling AS = e(S−1)F (z)ÃS with F (z) = f(z) − 2log(z), is

∂z

(

e(S− 1

2
)F e−Φ∂zÃS

)

+ m2e(S− 1

2
)F e−ΦÃS = 0. (4.2)

After the substitution ÃS = e
B

2 ψ with B(z) = Φ(z)− (S − 1
2)F (z), the equation is reduced

to the Schrödinger form
(

−∂2
z + V (z)

)

ψ = m2ψ (4.3)

with the potential

V (z) =
1

4
(∂zB)2 − 1

2
∂2

zB. (4.4)

To have the expected behavior of mass m2 ∼ n, the asymptotic form of the potential should

be quadratic [23]. This constrains the form of the metric strictly. We can read off of the

asymptotic mass spectrum of spin S meson from (2.2), (2.6),

m2 = 4

[

3

4
φ − (S − 1

2
)

(

φ − c

(

1 − 29

20
w(∞)

))]

(n + S), (4.5)

where w(∞) is the limiting value of the function w(z) in (2.6) when z → ∞. We have also

used Φ(z) = 3
4φz2. To match the experimental data [42], the term multiplying S − 1/2

must be canceled. This fixes the value of the dilaton:

φ = c

(

1 − 29

20
w(∞)

)

. (4.6)

For the n-excitations of the rho meson with spin S = 1, IGJPC = 1+1−− one obtains after

this cancellation2

m2
ρ ' 3φn. (4.7)

2The near boundary structure of the function w(z) affects the exact mass spectrum [23], and therefore

needs a closer analysis.
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A linear fit to the observations is m2
ρ = 0.93n GeV2 [42]. eq.(4.7) then gives φ = 0.31 GeV2

and, using the earlier established value c = 0.127 GeV2, (4.6) gives w(∞) = −1.0.

It is natural to expect that g2
YM ∼ e

3

4
φz2

. In our case φ > 0, and the coupling flows

toward strong coupling regime from UV to IR. Even though the direct comparison of

the weakly coupled and strongly coupled regime is impossible, this is still qualitatively

consistent. In our notation, this also gives the condition that w(∞) < 20
29 .

5. Hawking-Page transition of the 5d bulk geometry

In section 3, we have computed the boundary energy momentum tensor for the deformed

geometry which corresponds to finite temperature QCD on the boundary in terms of grav-

ity/gauge theory duality. Notice again that the energy momentum tensor (3.13) is that

of the 4d boundary theory and the phase transition is based on the 4d boundary theory

picture. In this section we will try to compute the phase transition in the 5d bulk à la

Hawking and Page [24].3 First we Euclideanize the metric (2.2) performing the Wick ro-

tation t → iτ , then evaluate the Euclidean action (2.1) corresponding to the two metrics

(2.5) and (2.6). The metric corresponding to the smaller action is the stable one.

The action (2.1) contains the unspecified matter term Lm, but actually this can be

eliminated using the equation of motion of the dilaton. The contribution to the action

from the matter part is given by

SE
m = − 1

6aπG5

∫

d5x∂z[
√

ggzz∂zΦ] = − 1

6aπG5

∫

dτd3x|z=z0,∞
z=ε [

√
ggzz∂zΦ], (5.1)

The upper limits z = z0 and z = ∞ correspond to the metrics (2.5) and (2.6) and both

give a vanishing contribution. The contribution from z = ε is divergent but the divergence

is the same for the two metrics and thus cancels when the difference between the actions

is evaluated. Thus the Lm-term can be entirely omitted from the discussion.

To evaluate the action for the remaining terms we have to specify the limits of in-

tegration in
∫

d5x =
∫

dτdzd3x. The integration over x is over all the space and thus

gives only the volume factor V3. The integration over z is over (ε, z0) for (2.5) and over

(ε,∞) for (2.6). Since we are assuming that the black hole is in thermal equilibrium with

thermal radiation, the high temperature geometry (2.5) has a natural temperature defined

by the black hole temperature βh = πz0 and the integration over τ is over the interval

(0, βh). The temperature of thermal radiation in (2.6) can be arbitrary. For comparison

with the high temperature metric, the temperature is fixed [24, 2] requiring that both have

the same physical circumference along the Euclidean time direction τ at the regularization

point z = ε. This leads to the relation

βl = βh

√

gh/gle
(hh−hl)/2|z=ε = βh

√

1 − ε4

z4
0

e−
29

40
cε2w(cε2) ' βh

[

1−
(

1

2z4
0

+
29c2

40

)

ε4+O(ε6)

]

.

(5.2)

3A similar idea was used for the computation of deconfinement temperature in [26] for a deformed AdS

geometry.
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Since the τ -integrals just give the upper limits, the action difference to be evaluated

now is

∆SE = SE
h − SE

l = − V3βh

16πG5

(∫ z0

ε
dz Lh − βl

βh

∫ ∞

ε
dz Ll

)

+ ∆Sboundary, (5.3)

where Lh and Ll are the Lagrangian densities without the Lm-term in (2.1) evaluated with

the metrics (2.5) and (2.6), respectively. The z-integrals in (5.3) converge since c > 0

and since the earlier result w(∞) = −1.0 satisfies w(∞) < 20/29. The ε → 0 divergences

in (5.3) require a more careful analysis. The divergent parts of both of the Lagrangians

are the same:4

Ldiv = − 8

z5
− 16c

z3
+ (27c2 − 3φ2)

1

z
. (5.4)

but one also has to take into account the ε4 term in βl/βh, eq.(5.2). The result is:

∆SE = − V3βh

16πG5

(
∫ z0

0
dz(Lh − Ll) −

∫ ∞

z0

dzLl − C

)

, (5.5)

where C = −203c2/20 + 1/z4
0 denotes the sum of the correction terms coming from the

boundary term (−58c2/5) and the temperature matching (+29c2/20 + 1/z4
0).

Computing numerically the difference of the actions for the metrics (2.5) and (2.6)

and using the parameter values obtained earlier from the 4d boundary theory and the

function w(z) in (2.8), we obtain the result plotted in figure 3, in arbitrary units. The

phase transition occurs when ∆SE = 0 and this corresponds to Tc ≈ 0.181 GeV. This is

essentially the same as the Tc = 0.186 GeV used to constrain the parameters of the 4d

boundary theory. Exact agreement can be obtained by somewhat modifying the function

w(z) in (2.8), for example, by writing w(z) = 2z2e−1.041z2 − tanh z2. Again we emphasize

that we use the bulk computation to match the critical temperature obtained from the

boundary computation instead of comparing the full thermodynamic functions to that of

the boundary theory in every detail.

6. QQ̄ potential and confinement-deconfinement transition

The QQ̄ potential (or free energy at finite T ) in QCD can be “experimentally” measured

using numerical lattice Monte Carlo techniques. Basically, one measures expectation values

of rectangular Wilson-Polyakov loops with one of the sides becoming large. At finite T , the

correlator of two Wilson-Polyakov lines 〈Tr W (L)Tr W (0)〉 = exp(−F (L, T )/T ) measures

the free energy at finite T .

To evaluate the QQ̄ potential we use standard gauge theory/gravity duality techniques

(see, e.g., [45, 46]) to evaluate the finite T expectation value of a Wilson-Polyakov loop of

quarks of fundamental representation. Consider first a temporal-spatial loop. The Nambu-

Goto action of a fundamental string then is

SNG =
1

2πα′

∫

dτdσ
√

det GMN∂aXM∂bXN . (6.1)

4This can be guaranteed by choosing the same value for the parameters φ and c, in both metrics.
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Figure 3: The difference SE
h −SE

l between the actions computed with the metrics (2.5) and (2.6).

The difference vanishes at T ≈ 0.181GeV, above that SE
h < SE

l and the high T metric (2.5)

dominates.

Since we are interested in a temporal Wilson loop we choose the string coordinates as

XM = (t, x, 0, 0, z), where z = z(t, x) = z(x) is independent of time. The end points of the

string are fixed at z(0) = ±L/2 and z(−x) = z(x). With the gauge choice of τ = t and

σ = x the string action becomes

SNG =
L2

2πα′
∆t

∫ L/2

−L/2
dx

ef(z)

z2

√

z′(x)2 + g(z)

=
L2

πα′
∆t

∫ z∗(L)

ε
dz

ef(z)

z2

√

1 + g(z)x′(z)2, (6.2)

where z∗ is the maximum value of z (figure 4) and ε is a parameter used to regulate the

UV divergence at z = 0. A potential will be defined by SNG = V (L)∆t.

The string frame deformation f(z) is given in terms of the Einstein frame deformation

h(z) by eq.(2.4), f(z) = h(z) + 4Φ(z)/3. Using eqs. (2.5), (2.6) and (4.6) we have

f(z) = (φ − c)z2 =
29

20
[−w(∞)]cz2 high T metric, (6.3)

=
29

20
[w(

√
cz) − w(∞)]cz2 low T metric, (6.4)

where we earlier fixed w(∞) = −1 and c = 0.127 GeV2. Due to the rapidly growing dilaton

term the string frame deformation thus behaves qualitatively differently from the Einstein

frame one: it grows monotonically ∼ +z2 for the high T metric and is always > 0 for the

low T metric.

The equation of motion following from (6.2) is simple and its first integral is

ef(z)

z2

g(z)
√

z′(x)2 + g(z)
= constant =

ef(z∗)

z2
∗

√

g(z∗), (6.5)

where the constant is given as the value of the left hand side when z′(x) = 0. From the

symmetry of the problem this is at x = 0, i.e., z∗ is the maximum value of z. Basically the

solution can be of the three types as in figure 4.
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Q Q̄
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2
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z = z0

z = 0

z = z∗

−L

2

L

2
− `

2

`

2

1

Figure 4: Three types of solutions: a QQ̄ solution (left), a solution with z′ = 0 only at z = z∗
(middle), a solution with a constant piece at z = z∗ (right).

At high temperature with the metric (2.5), the equation of motion (6.5) has the fol-

lowing types of solutions (figure 4):

• A quark-antiquark solution (figure 4 left)

x = ±L/2, x′(z) = 0, z′(x) = ∞, z∗ = z0, (6.6)

with the action and the corresponding potential, regulated as discussed below,

VQQ̄ =
L2

πα′

∫ z0

ε
dz

ef(z)

z2

=
L2

πα′

[

1

ε
+

∫ z0

ε
dz

1

z2

(

ef(z) − 1
)

− 1

z0

]

(6.7)

⇒ L2

πα′

[
∫ z0

0
dz

1

z2

(

ef(z) − 1
)

− 1

z0

]

. (6.8)

• A solution connecting the quark and antiquark with z′(x) = 0 only at x = 0 (figure 4

middle). Integration of (6.5) relates z∗ and L:

L = 2

∫ z∗

0
dz

1
√

g(z) [q(z∗)/q(z) − 1]
, (6.9)

where

q(z) = e−2f(z) z4

z4
0 − z4

, (6.10)

for high temperature phase and

q(z) = e−2f(z)z4, (6.11)

for low temperature phase. The corresponding potential is, regulating the z → 0

divergence as discussed below,

V (L, z0; f) =
L2

πα′

∫ z∗

ε

dz

z2
ef(z) 1

√

1 − q(z)/q(z∗)

=
L2

πα′

[

1

ε
+

∫ z∗

ε

dz

z2

(

ef(z) 1
√

1 − q(z)/q(z∗)
− 1

)

− 1

z∗

]

(6.12)

⇒ L2

πα′

[

∫ z∗

0

dz

z2

(

ef(z) 1
√

1 − q(z)/q(z∗)
− 1

)

− 1

z∗

]

(6.13)
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Figure 5: The functions q(z) in eq. (6.10) and L(z∗) in eq. (6.9) for the high temperature metric

with T = 400MeV using the deformation (6.3) (upper two panels). The lower two panels show the

same for the low temperature metric with T = 0, now plotted vs z in units of 1/GeV.

• One solution of the equation of motion also is (figure 4 right)

z = z∗ = constant. (6.14)

This can be made a solution of required type by connecting its end points to the

points x(0) = ±L/2 by a solution of the previous type with nonzero z′(x). If the

length of the constant piece is `, the value of z∗ will then be determined by (6.9) with

L → L − ` and the total potential is (6.13) evaluated for this z∗(L − `) added to

Vplanar =
L2

2πα′

ef(z∗)

z2
∗

√

g(z∗) `. (6.15)

For fixed L = ` + (L − `), 0 ≤ ` < L, we thus obtain a family of solutions with

increasing length ` of the constant region, decreasing lengths (L − `)/2 of the two

connecting regions at the ends and decreasing height z∗. It appears that at fixed L

all these solutions have a larger V than the one of the middle type.

Eqs. (6.8) and (6.13) diverge for z → 0 and have to be renormalized. There are two

possibilities:

1. Neglect the 1/ε terms in (6.8) and (6.13) and put ε = 0 in the remainder;

2. Subtract the two and put ε = 0 in the remainder, i.e., redefine V as V − VQQ̄.
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Figure 6: V (L) vs L as computed from eq. (6.13) for the low temperature metric (left, T -

independent) and F (L, T ) vs Lfor the high temperature metric (right) at T = 500, 300, Tc =

186, 100MeV. Note the difference in L-scales. The almost horizontal part of the low T potential

comes from the z∗ > 6 part of the L(z∗)-curve in figure 5, the horizontal parts of the high T

potential are L-independent values of VQQ̄ from (6.8).

We use the first one and the final potential is given by combining eqs. (6.9), (6.8)

and (6.13) so that the equilibrium state always corresponds to the smaller one of V and

VQQ̄.

Consider first the low T metric, using the deformation (6.4) and parameters obtained

earlier. We plot q(z) and L(z∗) with z and z∗ in units of 1/GeV in figure 5. The structure

in L at small z∗ is significant and leads to up to three values of V corresponding to one L

as seen in the plot of the (T -independent) potential V (L) vs L in figure 6. Tracing through

the curve L = L(z∗) in figure 5 one can trace through the curve V = V (L) in figure 6. The

almost constant branch of V (L) arises from the z∗ > 6GeV−1 part of L(z∗).

We interpret the resulting T = 0 potential as showing a confining part for L < 1.2 fm

and a constant part for L > 1.2 fm.

For L < 1.2 fm we can express the potential in Cornell form

V (L) = −4

3

αs

L
+ σL. (6.16)

If we use αs ≈ 0.36, then we get the AdS radius L2/(πα′) ≈ 0.67 and σ ≈ 0.168GeV2

or
√

σ ≈ 410MeV. This is in reasonable agreement with recent lattice data giving
√

σ ≈
460 MeV [43]. Note that Tc/

√
σ ≈ 0.46 in this case.

Beyond 1.2 fm the potential is approximately constant and grows slowly from ≈ 0.9 GeV

to VQQ̄ = 0.961 GeV, obtained by evaluating eq.(6.8) with z0 = ∞. One can speculate that

the constant potential is an indication of QCD string breaking of dynamical quarks [47].

The constant part starts at 1.2 fm and its energy scale is about 1GeV. This should be in

principle the twice the mass of the lightest hadron. Current lattice data indicates that the

string breaking occurs about 1.2 − 1.4 fm at the energy scale of 1.0 − 1.2 GeV [48]. This

is consistent with our model calculation. The reason why we see the string breaking is

not obvious at first thought because it happens only when dynamical quarks are included.

However, from the consideration of linear Regge behavior of meson mass spectrum and
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the boundary thermodynamics we have been lead to a specific form of the function w(z)

containing a scale related to the mass scale of the fundamental matter in QCD. Thus in

our model (2.2) we are already implicitly including dynamical quarks from the beginning.

In AdS/CFT, light dynamical quarks can be added by introducing a spacetime-filling D7

brane [29]. It would be very interesting to see in supergravity whether the original metric

ansätz (2.2) can be related to this flavor brane background.

Now that we have determined the AdS radius L2/(πα′) ≈ 0.67, we can draw the

QQ̄ potential at high temperatures, again using the deformation (6.3) and parameters

determined earlier. The quantities q(z) and L(z∗) with z and z∗ in units of z0 are plotted

in figure 5 and V (L) in figure 6 for T = 400 MeV. It is again useful to trace through L(z∗)

and see how it maps to V (L): one starts from L = 0, V = −∞, then L and V grow to a

maximum value after which both again decrease but so that V is almost constant. Finally

again L = 0 at z∗ = z0 at which point V (L = 0) = VQQ̄. This is L-independent and is

shown as the horizontal curves in figure 6.

One can observe the following for the high temperature phase:

1. The overall potential is the lowest of the curves/line and contains the usual confor-

mally invariant V ∼ −1/L at small L. At some L this reaches VQQ̄ and from this L

onwards the preferred state is the QQ̄ state with a constant L-independent potential.

This is the structure observed already in [45] for an undeformed metric.

2. At very large T , small z0, the large L value of the potential (free energy) VQQ̄ from

eq.(6.8) approaches L2/(πα′)(−πT ). Although one cannot strictly separate internal

energy E and entropy S in the free energy of the QQ̄ state, this is compatible with

E = 0, S = L2/(πα′)·π ≈ 2.1. Notice that ∆S ∼ O(1) for simple quark and antiquark

system.

3. As the temperature decreases below Tc, a first order phase transition occurs as we

have seen in sections 3 and 5. One can continue plotting V (L) in this metastable

phase, as done in figure 6, and obtain a linear confining potential. However, the

stable phase is the one corresponding to the metric (2.6) which should be used for

T < Tc.

7. Discussion

In this paper, we have considered a 5d gravity action which presumably could descend

from a higher dimensional fundamental theory. Following [23], we proposed a solution

of the equations of motion that is dual to a QCD-like gauge theory on the 4d boundary.

Using standard gravity/gauge theory duality correspondence we computed the 4d boundary

energy-momentum tensor. The gauge dynamics on the boundary is that of a strongly

coupled fluid modified by a vacuum energy. The bulk geometry was further constrained so

that the 4d boundary theory shows a first order phase transition. With constraints from

the hadron spectrum, the parameters of the deformation were fixed. Then we considered

the 5d bulk transition following the recipe of Hawking and Page [24] and found that the
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geometric transition in the 5d bulk precisely matched with the phase transition on the

4d boundary. This is a remarkable correspondence and shows the power of gravity/gauge

theory duality and the reasonableness of the model we have set up for the dual construction

of QCD-like theories. The computation of quark-antiquark free energy (potential at T = 0)

showed that at T = 0 potential contains a confining linear part but also string breaking,

indicating that the deformation contains effects of dynamical quarks. At T > Tc we saw a

deconfined state with entropy = 2.1/pair.

In general terms, the whole setup started from three unknown functions, the deforma-

tions of the high T and low T metrics and the dilaton. We chose simple ansätze for the

high T deformation, h(z) = −cz2, and for the dilaton, Φ(z) = φz2. The low T deformation

was then constrained in various ways and one ended up with the function w(z) plotted in

figure 1. There is some freedom to change this function in the intermediate z range, but

not much without destroying the coincidence of the 4d boundary and 5d bulk transitions.

Many QCD-like features treated in this paper are basically IR dominant phenomena,

but since from gravity/gauge theory duality, the boundary data is critically dependent

on the boundary behavior of the bulk metric, the metric form in the UV region near the

boundary becomes as important. If we solve the equations of motion of supergravity in

top-down approach, this UV/IR behavior is naturally encoded in the solution, but when

we approach phenomenologically we have to put this UV/IR behavior by hand. What we

saw here is that the form of the metric is stringently constrained by this.

There are several directions of future study. First is to check the our ansatz using

various physical quantities in QCD and refine the form of w(z). Also it would be highly

desirable to reproduce the solution in supergravity. Even though this is very difficult task,

we have some better guiding principle at least.
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